Unit 8: Solutions

Ms. Johnson Honors Chemistry

Unit Learning Objectives: By the end of the unit students will be able to...

(1) Define a solution and give examples.

(2) Define solute and solvent and determine the solute and solvent for a given solution

(3) Define molarity using a mathematical equation and give the appropriate units.

(4) Perform calculations involving molarity/solution concentration.

(5) Perform calculations involving solution dilution.

(6) Define dissociation and describe the interactions between water and ionic compounds that lead to dissociation.

(7) Write dissociation equations for ionic compounds and represent dissociation equations using a diagram showing ions and water molecules.

(8) Calculate the concentration of ions in a solution from the concentration of an ionic compound.

(9) Calculate the concentration of ions resulting from mixing two solutions by applying solution dilution and dissociation equations.

(10) Compare unsaturated and saturated solutions.

(11) Determine if a compound is soluble or insoluble in water using a solubility table.

(12) Define precipitate in terms of solubility.

(13) Describe the effect of temperature on solubility. Determine the solubility of a compound at a given temperature from a solubility curve.

(14) Write the formula equation, complete ionic equation, and net ionic equation for a precipitation reaction, giving the appropriate state for each substance.

(15) Develop a procedure to selectively precipitate an ion from solution on the basis of solubility rules.

(16) Perform stoichiometric calculations involving molarity of solutions.

Monday	Tuesday	Wednesday	Thursday	Friday
Feb. 1	2	3	4	5
Solutions Activity	Solution Dilution	Solvation/ Dissociation	Solvation/ Dissociation	Lab: Spectroscopy
8	9	10	11	12
Solubility	Solubility	Solubility	Lab: Solubility	Quiz: Solubility
15	16	17	18	19
No School	Solution Stoich	Solution Stoich	Unit 8 Review For Test	Unit 8 Test HW packet Due

A solution is a homogeneous mixture.

Standard Solutions:_____

Solutions of a certain concentration are often prepared by diluting solutions of a higher concentration.

Dilution: _____

Dilution Calculations:

The moles of solute before dilution must equal the moles of solute following dilution (*this is because no solute is added; only solvent is added!*)

Ex. 2.0 L of 0.24 M solution of KBr is diluted to a final volume of 4.8 L. Calculate the final concentration. Calculate the mass of KBr present in the solution.

450 mL of solution contains 100 g of NaCl. What is the final concentration if 200 mL of water are added to the solution?

Solvation of Ionic Compounds:

Solvation: _____

Dissociation:

Cation and H₂O

Anion and H₂O

• Hydration: The reaction of a substance with water.

Review: Write the dissociation equation for each of the following:

- 1. BaBr₂
- 2. ZnSO₄
- 3. Cobalt (III) Chloride
- 4. Scandium Chlorate

Determining the Concentration of each Ion in a Dissociation Equation:

Steps to determine ion concentration

Ex. Calculate the concentration of each ion in a 0.26 M solution of aluminum nitrate

Ex. Calculate the concentration of each ion in a 0.20 M solution of SrCl₂

Ex. Calculate the concentration of each ion in a 0.0540 M solution of iron (III) sulfate.

Dissociation and Mixing:

When two solutions are mixed, the concentration of each ion is diluted as a result of the added volume. The initial concentration of each ion is first calculated from the dissociation equation. The final concentration of each ion can then be calculated using the solution dilution equation. The final volume is the total added volume of both solutions. The final concentration of each ion is listed.

Ex. Calculate the concentration of each ion resulting from mixing 40 mL of 0.12 M potassium iodide with 60 mL of 0.15 M magnesium chloride, given that no reaction occurs.

Ex. Calculate the concentration of each ion resulting from mixing 2.5 L of 0.72 M ammonium chloride with 1.5 L of 0.80 M ammonium sulfate, given that no reaction occurs.

• If an ion is present in both of the original solutions, the final concentration is equal to the final concentration from each of the solutions added together

Solubility

lubility:	
urated:	
saturated:	
luble:	
oluble:	
cipitate:	

Ex: Classify the following compounds as soluble (S) or insoluble (IN) in water.

- a. PbI_2
- b. MgS
- c. $Al(OH)_3$
- d. Li₂CO₃
- e. CuCl₂

Solubility Table

Soluble >0.1 M at 25 °C Insoluble <0.1 M at 25 °C

nsoluble <0.1 M at 25 °C	le <0.1 M at	oluble <0.	at 25	°C
--------------------------	--------------	------------	-------	----

Anion	Cation	Solubility of Compounds
All	Alkali ions: Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺	Soluble
All	Hydrogen ion: H*	Soluble
All	Ammonium ion: NH4 ⁺	Soluble
Nitrate, NO3 or Chlorate, ClO3 or		
Hypochlorite, ClO ⁻ or Perchlorate, ClO ₄ ⁻	All	Soluble
or Acetate, C ₂ H ₃ O ₂		
Chloride, Cl ⁻ or Bromide, Br ⁻	All others	Soluble
or Iodide, I	Ag ⁺ , Pb ²⁺ , Cu ⁺	Insoluble
Elucrido E	All others	Soluble
Fluoride, F	Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺	Insoluble
Sulphide S ²⁻	Alkali ions, H ⁺ , NH ₄ ⁺ , Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺	Soluble
Supilité, S	All others	Insoluble
Hydroxide OH	Alkali ions, H ⁺ , NH ₄ ⁺ , Ba ²⁺ , Sr ²⁺	Soluble
Hydroxide, off	All others	Insoluble
Sulphote SO 2-	All others	Soluble
Sulphate, 504	Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺	Insoluble
Oxalate, C2O42 or Phosphate or PO43-	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble
Carbonate, CO32-, or Sulphite SO32-	All others	Insoluble

Solubility and Reactions

Solutions of ionic compounds can react to form a precipitate. This reaction can be written in three forms:

- 1. The **formula equation** a balanced double replacement reaction labelling soluble compounds as aqueous (aq.) and insoluble compounds as solid (s)
- 2. The **complete ionic equation** all aqueous compounds are dissociated, solid compounds remain undissociated
- 3. The **net ionic equation** identical species are cancelled. The ions which do not participate in the reaction are called **spectator ions**.

Ex. Write the formula equation, complete ionic equation, and the net ionic equation for the reaction between $Pb(NO_3)_2$

Ex. Write the formula equation, complete ionic equation, and net ionic equation for the reaction between MgSO₄ and Na₃PO₄. List Spectator Ions

Ex. Write the formula equation, complete ionic equation, and net ionic equation for the reaction between $CaBr_2$ and $AgNO_3$. List the spectator ions.

Factors Affecting Solubility:

- Saturated Solution: A solution that holds the maximum amount of solute.
- **Unsaturated Solution:** A solution that holds less than the maximum amount of solute.
- Supersaturated Solution: A solution that holds more than the maximum amount of solute.

If a solutions is supersaturated any small disturbance can cause the solute to recrystallize

The graph shows the saturation level of different solutions at a given temperature. If a solution has a solubility that results in a point above the line, then the solution is considered to be supersaturated. However, if a solution has a solubility that results in a point under the line, then the solution is considered unsaturated.

Selective Precipitation

Selective precipitation is a procedure in which ions are separated from one another in solution based on their differing solubility. An ion must be found that forms a precipitate with only ONE of the ions present in the solution and not with any other. In order to add the ion to the solution, it must be added with an "escort" ion. An escort ion can be chosen if it is soluble with the ion being added. Good positive escort ions include the alkali ions, hydrogen, and ammonium since they are soluble with all anions; good negative escort ions include nitrate, chlorate, hypochlorite, perchlorate, and acetate as they are soluble with all cations. Once the precipitate is formed, it can be filtered from the solution and the next ion(s) can be precipitated. There are many possible variations to a selective precipitation procedure.

ex. A solution contains Ca2+ and Cu+ ions. Describe a procedure to separate each of the ions from solution.

	Ca ²⁺	Cu ⁺	(1) (a) Add NaCl (b) ppt CuCl (c) filter
CI	no ppt	ppt	(2) (a) Add NaF (b) ppt CaF ₂ (c) filter
F	ppt	х	

(once Cu⁺ is precipitated, it no longer needs to be considered)

Selective Precipitation Procedure

Ex. A solution contains Ba²⁺, Pb²⁺. Describe a procedure to separate each of the ions from solution.

Ex. A solution contains Br⁻, F⁻, and S²⁻. Describe a procedure to separate each of the ions from solution.

Solution Stoichiometry

Ex. 100 mL of 0.300 M barium chloride reacts with 200 mL of sodium sulfate.

- a. What concentration of sodium sulfate solution is required?
- b. What would be the mass of each of the products?

Ex. 150 mL of 0.150 M lead (II) nitrate reacts with 205 mL of 0.250 mL of 0.250 M potassium iodide solution.

- a. What reactant is limiting and which is in excess?
- b. What would be the mass of each of the products?
- c. Write the net ionic equation for the formation of the precipitate.